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Abstract. A special condition of Scherk-Schwarz and S
1
/Z2 orbifold breaking 

brings about both a weakly-coupled SU(6) baby Higgs and a strongly-coupled 

will-be simplest little Higgs scalar in the near-brane of SU(3)SU(3)U(1). The 

latter produces SU(3) VEVs and simplest little-like Higgs after triplet-triplet 

splitting and, under quadratic-based and non-quadratic-based Coleman-Weinberg 

potential, the simplest little-like Higgs yields exotic Higgses, scalar-pair and 3-

scalar Higgses in the so-called one-by-one and collective breakings. A generalized 

non-quadratic-based Coleman-Weinberg potential utilizing a NGB-like scalar 

produces NGB-dual Higgses with a squared mass relevant to the components of a 

3-scalar Higgs that further create a duality of 3-scalar Higgs and NGB-dual 

Higgses. This is due to a double-vacua property such that each vacuum responds 

equally to the shifts happening at either non-zero or zero-VEV vacuum.  

 

Keywords: Orbifold; Scherk-Schwarz breaking; little Higgs; Standard Model; 

Coleman-Weinberg potential; Nambu-Goldstone boson. 

1 Introduction 

There are various extensions of the Standard Model, including theories with 

extra dimensions. One of these approaches is to define 5D SU(6) gauge 

symmetry and, based on AdS/CFT correspondence, its relevant SU(6) global 

symmetry [1], which breaks after shift symmetry breaking and produces a 

massive PNB. The scalars come from the fifth component of the 5D gauge 

bosons [1-4] and/or directly from the bulk [5]. 

In electroweak theory, the third component of the massless gauge boson shows 

up as the Nambu-Goldstone boson as additional degree of freedom, 
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transforming the gauge boson into a massive state. The third component of 

isospin is used to construct a holonomy in SU(2)LU(1)Y, which is extended to 

5D SU(2)U(1) by replacing the 3rd isospin component with the fifth 

component of the 5D gauge boson as a phase factor of the holonomy [6]. The 

symmetry is broken if the fifth component has non-zero VEV. 

It is clear that through the 3rd isospin component, a correspondence between the 

Nambu-Goldstone boson and the broken fifth component of the 5D gauge boson 

is established as the basis for constructing a generalized Coleman-Weinberg 

potential. 

In [7], special conditions of Scherk-Schwarz mechanisms are utilized to resolve 

the problem of breaking the SU(6) GUT. The trivial and non-trivial breaking 

patterns are simultaneously realized by compactification on the S
1
/Z2 orbifold in 

the 5-dimensional SU(6) model, where only the (pseudo) non-trivial condition 

demands the existence of scalar bosons. This condition facilitates the periodic 

5D scalar [1,3,8-18] with extra-dimensional global symmetry in a small extra 

dimension, the so-called near-brane area [1,7]. In the near-brane area, the first 

symmetry breaking of 5D SU(6)→4D SU(6) is triggered by the Scherk-

Schwarz mechanism and followed by trivial and pseudo non-trivial orbifold 

breaking [4-8] to produce an SU(6)-origin little (baby) Higgs scalar as the origin 

of SU(6) will-be simplest little Higgs and SU(6) baby Higgs scalars 

successively [7]. The second symmetry breaking 4D SU(6) 4D SU(3)  

SU(3)  U(1) is induced by a SU(6) little-like Higgs through orbifold-based 

field redefinition and the broken shift symmetry in the lower-near-brane [1,4,7]. 

The VEVs are obtained from two Scherk-Schwarz parameters [2,6,19-20]. 

In this paper, the 5D model is constructed based on [7] together with Scherk-

Schwarz and S
1
/Z2 orbifold breaking. The model makes use of a near-brane 

Coleman-Weinberg potential and its generalized version on which the quantum 

route of the SU(6) will-be simplest little Higgs scalar will be based. One can 

immediately predict the birth of the simplest little Higgs from the SU(6) will-be 

simplest little Higgs based on pseudo non-trivial breaking where SU(3)  

SU(3)  U(1) symmetry shows up. Here, the emerging of one-by-one and 

collective breaking potentials and Higgses are discussed. Moreover an NGB-

like scalar is established and a generalized Coleman-Weinberg potential is 

constructed, which, after some simplification, produces the components of the 

above multi-scalar Higgs. Before closing the paper, a brief discussion on the 

duality of the two types of Higgses in a double vacua is given. 
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2 The 5D SU(6) Breaking Formalism 

2.1 The Scherk-Schwarz and Orbifold Breaking 

In the 5D theory, compactified on the S
1
/Z2 orbifold with the Scherk-Schwarz 

twist, the field obeys, 

  (       )         (   )  (1) 

where   is the compactification radius. The symmetry generated by   is broken 

by the 5D kinetic term, while the one generated by    is unbroken if   ( ) 
satisfies the following (anti)commutative relation [6], 

 *     +   *    +        ,     -      (2) 

We now apply the preceding discussion on the S
1
/Z2 orbifold to SU(6) [5,6]. Z2 

for SU(6) can be constructed as follows, 

        (.
  
  

/  (
  

 - 
*  4

-  

 - 
5+   (3) 

This form satisfies the boundary conditions of the S
1
/Z2 orbifold suitable to 

realize the symmetry breaking SU(6)→SU(3)SU(3)U(1) in a non-trivial 

pattern. A special condition emerges from the anti-commutator in Eq. (2) if ω ≠ 

0, Z2 as in Eq. (3), and Q = 0, which defines a pseudo non-trivial pattern with 

5D SU(6) → 4D SU(6). This means dimensional deconstruction does not bring 

gauge symmetry breaking. The same result is obtained if one takes Z2 = U in the 

commutator in Eq. (2), where U = Z2
(1)

Z2
(2)

 = I6, as shown by Eq. (3), which 

demands all SU(6) generators for Q’ to be unbroken, hence defining a trivial 

pattern. Both patterns facilitate SU(6) little-like bosons in massless state. 

2.2 The 5D-Model and SU(6) Would-be Baby (Little) Higgs 

We adopt the 5D-model with 4D particles in 2 branes and 5D gauge bosons 

with scalar bosons in the bulk. The two branes correspond to the fixed points y 

= 0  and y = πR of the S
1
/Z2 orbifold. 

With  ̃ in the fundamental representation of SU(6), the bulk scalar boson 

x,ycan be expressed as periodic scalar field  ̃ via the relation [6], 

  (   )            ̃(   )   (4) 

with Qv is the broken generators of SU(6) in the VEV direction [4,6]. 
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Under the gauge-Higgs Unification Principle [7,8],  ̃ has Kaluza-Klein (KK) 

expansion forms for the even (y = 0) and odd (y = πR) scalars due to parity 

splitting under the dimensional deconstruction, as follows, resp. 

  ̃ 
( )
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where  ̃ 
( )

       are the original bulk scalars. 

At the orbifold singular points, which are 4D and have twist factors Tg = +1 for 

y = 0 and Tg = ‒1 for y = πR, two non-zero VEVs can be assigned at one fixed 

point, without losing any generality [7], 

   
 

√  
(       )        

 

√  
(       )

              (7) 

The parametrization of the SU(6) would-be baby (little) Higgs is governed by 

the number of scalar doublets that can be arranged in a 66 matrix. Thus, it 

depends on the number of generated NGBs through the condition [7], 

      ̃        ( ̃ )         ( ̃ )        (8) 

with a’ = 1, …, 35. Eq. (8) gives a total of 22 free NGBs. Finally, one has 8 

scalar bosons that create 4 scalar doublets to be assigned as the SU(6) would-be 

baby (little) Higgs as follows [7], 
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,  (9) 

where      
    

 . The scalar doublets h and h’ are would-be SM Higgses. 

The exponential forms of the IR near-brane 4D SU(6) scalars follow directly 

from Eq. (5), Eq. (7) and Eq. (9)  
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This is similar to the principle of PNB parametrization in the simplest little 

Higgs [3,13,15], and they are named SU(6) would-be baby (little) Higgses. 
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2.3 Near-Brane Coleman-Weinberg Potential and Baby Higgs 

Accordingly, the Lagrangian can be written as 

   
  ( )

               (   )  (11) 

where    (                 )
  ,  -           is a scalar boson 

sextet of  SU(6), and scalar field  is re-expressed as periodic scalar field  ̃ via 

the following relation [6], which is identical to Eq.(4), 

  (   )         ̃(   )      
  

 
  (12) 

Defining D and Dy as 4D and fifth-dimension covariant derivatives 

respectively, with T
a
 = a

/2 = Ta, while g5 is the 5D coupling constant, 

              
        

          
 
    

            
         

    -     
 
    (13) 

the bulk,   
  ( )

   
       (  )  

    -     
   

  ( )
, can be separated from the 4D 

near-brane Lagrangian, which is just in between the brane and the bulk. 

Setting Qv = 0 for the SU(6) upper-near-brane (thus eliminating the Lorentz 

invariant-violating term), the Lagrangians, after Scherk-Schwarz but prior to 

orbifold breaking, can be expressed as follows, 

   
         ̃    ̃  (14) 

   
  ( )

    ̃    ̃     (  
    ̃   ̃ -  

 
   ̃    ̃). (15) 

For  (  )  
    -     

 two cases are based on shift-symmetry-breaking parameter () 

(or (y) due to  = y/R) as follows: in the upper-near-brane where shift 

symmetry is intact and  is small, (y ~ 0, (y) → 0),    ̃     ̃    due to 

    (      )     while in the lower-near-brane, where shift symmetry is 

broken and (y)-term and  are significant, one finds (y ~ 0, (y) → ≠ 0), 

   ̃     ̃    due to the significant value of     (   )  Noting 

 (  )  
    -     

   
      and  (  )  

    -     
   

    -     
, one gets for the upper-near-

brane, 

   
    -     

  ( ) 2
 

 
   

  ̃   
 
  
  ̃3   (16) 

and for the lower-near-brane, for the reason which will be clear after Eq. (19), 

   
    -     

   
( )

  (17) 
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where V
(6)

 will turn out to be VP
(6)

 in Eq. (26). 

Eq. (14) reflects the condition in the brane (y = 0,), while Eq. (15) is for the 

far-distant out-of-brane condition (y > 0,). 

For the upper-near-brane area Neumann the boundary condition dictates 

   ̃     ̃    and, based on the property of extra-dimensional dominance, 

makes Eqs. (14) and (15) zero. This shows that Eq. (16) is the only upper-near-

brane equation with (y) ≠ 0 for y ~ 0 and under both trivial and pseudo 

nontrivial breaking conditions, Qv = 0, we obtain ( ̃( )   ̃ 
( )

( ) and  ̃( )  

 ̃ 
( ) 

( )) 

   
    -     

 
 

 
  
 ( ̃( )   

 
)(  

  ̃( ))         (18) 

In this upper-near-brane bulk (extradimensionally-dominated space) under the 

provision of pseudo non-trivial orbifold breaking, by which   ̂
 
  ̂ and   

 ̂  ̂ 

produce a upper-near-brane scalar due to gauge-scalar unification [2,4], one has 

the relations (sextet out of 29 broken   ̂
 

 and   
 ̂ ) as follows 

   ̂
 
  ̂   ̃( )       

 ̂  ̂   ̃( )   (19) 

 ̃( ) (or  ̃( ) ) is a diagonal 33 sub-matrix component of the 66 matrix of 

  ̂
 
  ̂ (or   

 ̂  ̂) due to hermitian conjugacy and the condition    ̃  

    
 ̂  ̂   ,    ̃      ̂

 
  ̂     In the lower-near-brane    ̃      ̃    

due to the significant     (   ) because of the dominant 4D property. Eq. (18) 

provides the quartic term with i index to label the original scalar boson in Eq. 

(18), which, using  ̃( ) as diagonal component of   ̂
 
  ̂ and   

( )
   

   can be 

rewritten as 

   
( )

   
( )

( ̃( )  ̃( ))( ̃( )  ̃( ))  (20) 

This scalar lives below energy scale 
NP

(6) and can be represented by SU(6) 

baby Higgses that are defined by zero mode approximation in the lowest order 

perturbation and can be written as (P: perturbative), 
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Eq. (21) brings us to the orbifold-based field redefinition as follows, 
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Surprisingly, the new  ̃   
( ) ( )       are split into triplets of SU(3) little-like 

Higgses in accordance to 

  ̃   
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( )  4
    

  
( ) 5      ̃   

( ) 
( )  4

  
( )

    

5  (23) 

where, with       -    SU(3) little-like Higgs triplets are defined as 
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The potential of the SU(6) baby Higgses follows from Eq. (17) and (20) by 

replacing y
(6)

→P
(6)

, for i,j = 1,2, and  ̃   
( ) 

  ̃   
( ) 

 for i ≠ j. From Eq. (23) 

one finds  ̃   
( )  

 ̃   
( ) 

   for i ≠ j. Therefore Eq. (20) is rewritten as 
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which is the sum of potentials of three Higgses [7]. 

3 SU(3)-Origin Higgses from SU(6) Near-Brane 

3.1 The Strongly-Coupled SU(6) will-be Simplest Little Higgs 

Scalar 

Let us start with the upper-near-brane Lagrangian, which is basically a quartic 

potential [7] in Eq. (20), where y
(6)

 is the coupling constant of the upper-near-

brane, while  ̃ 
( )

 and  ̃ 
( )

 are the SU(6)-origin would-be little (baby) Higgs 

bosons as expressed in Eq. (10) [7]. 

The Lagrangian in the lower-near-brane can be obtained from Eq. (20) by 

replacing y
(6)

→yNP
(6)

 and  ̃ 
( )

  ̃ 
( ) 

  ̃ 
( )

  ̃ 
( ) 

 as follows, 
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where yNP
(6)

 is the coupling constant of the lower-near-brane.   ̃ 
( ) 

  ̃ 
( ) 

 are 

the SU(6) will-be simplest little Higgs bosons, which can be written as [7], 
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with the following SU(3) VEV triplets, 
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One finally obtains the SU(3) simplest-like little Higgs with  → ’ as 
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3.2 The Lower-Near-Brane SU(3) One-by-One and Collective 

Breaking Potentials and Higgses 

Eq. (27) can be rewritten in the following form, 
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while Eq. (32) can also be expressed as follows 
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consequently treat each remaining term separately, for farther-from-brane space, 

after substituting Eq. (29) and (30) into the equations below, 
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and immediately get the following potentials 
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      and    
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replaced with SU(3) parameters, 
(3)

, g’ and (3)
, then Eq. (39) can be seen as a 

pair of SU(6)-origin light Higgses brought from SU(6)-level [7] down to SU(3)-

level. This pairing condition is important for understanding the multi-

component Higgs that shows up as an intermediate Higgs. 

Shift symmetry breaking happens for  ̃ 
( ) 
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( ) 

 at the same time, and 

contribution of its elements, (1)
 and (2)

, takes place simultaneously. This is the 

only way     
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(   ) can have stable and fixed values but, as a side effect, 
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Adding and simplifying Eq. (41) and (42) and defining the following, 

  ( )
( )

      
( )

2.  
( ) 

 ( )/ . ( )   
( )

/  .  
( ) 

 ( )/ . ( )   
( )

/3  (43) 

  ( )
( )

      
( )

2. ( )   
( )

/ .  
( ) 

 ( )/  . ( )   
( )

/ .  
( ) 

 ( )/3  (44) 

gives the mass terms and constant potentials, after adjusting     
( )

  
( )

, 

   
   
( )

  ( ) {   
    

   
  
     

  

    
     

  
     

  

   
       }  (45) 

where   (   )  (       ) and  
   
( )

   ( )
( )

   ( )
( )

  The remaining terms of 

Eq. (41) and (42) give, respectively, 

  ( )
( )       

( )
2.  

( ) 
 ( )/ .  

( ) 
 ( )/  .  

( ) 
 ( )/ .  

( ) 
 ( )/3  (46) 

  ( )
( )

      
( )

2. ( )   
( )

/ . ( )   
( )

/  . ( )   
( )

/ . ( )   
( )

/3  (47) 

which can be expressed, setting       
    

  (  
    

 )  
  
 

  
 0

  
 

  
 1    

 

  
 0 

 

  
 1   

  and     
( )

  
( )

, as follows, 

  ( )
( )    ( )(   

    
  ) 

6
 

  
4
( )      

-     
5 

    

  
8
 

  
 (

( )     

   
* 

 

  
 (

( )    

    
*97

  (48) 

  ( )
( )    ( )(   

    
  ) 

6
 

  
4
( )      

-     
5-

    

  
8
 

  
 (

( )     

   
* 

 

  
 (

( )    

    
*97

  (49) 

Eq. (48) and (49) immediately give the following potential, 
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and the total potential becomes 
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For indentical H’ and H one can set H’ ~ H  and H” = H’ ‒ H~ 0, which causes 

one SU(3) symmetry to be conserved, as shown by VC
(3)

 ~ 0. 
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Theoretically H (or H’) can achieve non-zero mass as shown by Eq. (48) and 

(49), which are written in short form as given below, 
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and can be expanded in H[H’] to produce the mass term    [     ]. From the 

second and fourth order terms of VC
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 defined in Eq. (50) one can rewrite it, 

after making use of Eq. (52), to give 
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The mass term (quartic term) in    ,(     ) - vanishes only if  f1’ = f2’ or 

becomes negligible if f1’~ f2’. The conclusion can be drawn from now on that 

the only way the potential  VC
(3)

 does not become zero is by setting  f1’≠ f2’, 

which provides a negative mass term of spontaneous symmetry breaking (SSB) 

potential. This indicates the existence of a new global symmetry U(1)VH, the 

VEV homogeneity symmetry, which connects with VC
(3)

 = 0 and is broken when 

f1’≠ f2’. This will play an important role in the restoration of one SU(3) to 

provide the final global symmetry SU(6)→SU(3)SU(3)U(1)→SU(3) 

SU(2)U(1)VH, which strongly shows the breaking of the single SU(3) vacuum. 
Collective breaking with the single vacuum requires VEV homogeneity f1’~ f2’ 

or  VC
(3)

 ~ 0, which makes the collective potential in Eq. (40) become 
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( )

     ( )
( )

     ( )
( )

,  (54) 

with   
   
( )

 and     ( )
( )

      , as shown by Eq. (45) and (37) respectively.  

Therefore Eq. (54) straightforwardly provides the following potential, 
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and the Higgs mass-squared,  
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Considering 
(3)

 << 
ZP

(6), 4f’1
2
f’2

2
 in addition to (f’14+ f’24), where f’12f’22 and 

f’14+ f’24 are dominant factors in the light Higgs and the intermediate Higgs 

mass-squared [7], one concludes that Eq. (56) provides the mass of the 

intermediate Higgs boson from the SU(3)CHSU(3)PH symmetry that emerges 

under the collective breaking property. Comparing the one-by-one breaking 

pattern in the closer-to-brane and the farther-from-brane parts of the lower-near-

brane, one immediately notices that a collective breaking (simultaneous 

breaking) is just a special condition of the one-by-one breaking of the shift 

symmetry with the time difference being very short. In this way one can regard 

Eq. (56) not only as a single Higgs but rather as a multi-component Higgs that 

consists of two scalar-pairs and one extra scalar. 

4 SU(6) Strongly-Coupled-Origin NGB-Dual Higgs 

4.1 Higgs-NGB Double Vacua as a Source of NGB-Dual Higgs 

The AdS/CFT correspondence suggests the correspondence of 5D (y~0) local 

gauge and 4D global gauge SU(6) symmetry [1], which in this context extends 

to a 4D PNB Higgs and a 5D (y~0) Nambu-Goldstone boson (NGB) due to 

global and local properties. Consequently one can generalize and interpret 

 ̃( )       in Eq. (20) to include NGB, , which can be put in a diagonal 

matrix representation, taking into consideration the PNBs residing in the off-

diagonal of the sub-matrices, as shown by Eq. (9). 

One can use SU(6) generators 8, 34, 35 to define NGBs as follows, 

  ( )   (           )      
( )   (             ), (57) 

where  is the NGB, n8, n34 and n35 are normalization constants, and the 

generators are given below [21], 
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4
    (-  -  - ) ( )   
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so that, 

  ( )        (      -  -  - )  ( )        (-  -  -       )       (59) 

Defining          -     (  )       (       )  and            , SU(6) 

NGBs can be written in short form as, 
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  ( )  (
((  )  )   ( )   

( )   ((  ) )   
*     ( )  (

((  ) )   ( )   

( )   ((  )  )   
* (60) 

Recalling Eq. (16) with i ≠ j, the Coleman-Weinberg potential is generalized by 

replacing  ̃( )       with    
( )

      , which is justified considering 

   
( )

       is the third component of a massive 4D gauge boson, while 

 ̃( )       is the PNB Higgs. 

Substitution of the fifth component of the 5D gauge boson with the third 

component is definitely acceptable [22], which gives a generalized Coleman-

Weinberg potential for SU(6)  ̃( )       as below, 

    
( )

   
( )

( ̃( )    
( )

)(   
( ) 

 ̃( ))              (61) 

and for SU(6)  ̃( )       , 
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where    
( )

 is written as, 
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with + for i = 1, ‒ for i = 2, vNG
(1)

 = v, and vNG
(2)

 = v’ in Eq. (7), or    
( )

 

(    
      )  and    

( )
 (       

 ) . Applying a similar 

expansion to Eq. (10) to obtain Eq. (28), one gets 
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which gives directly, with the aid of Eq. (7), the following sextets, 
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where one can define SU(3) NGBs    
( )

       as follows, 
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Absorbing factor   √  by (    )  .
 

√ 
  /         Eq. (66) resembles the 

NGBs produced in SU(3) SU(3) symmetry as discussed in [22]. 

In fact, Eq. (65) can be rewritten into a compact form similar to Eq. (28), 

    
( )

 (
   

( )

  
( )

+        
( )

 (
  

( )

   
( )

+. (67) 

In comparison, one finds that the doublets in Eq. (67) are the inversion of the 

doublets in Eq. (28) after replacing (1)
NG with (1)

, indicating 2 different vacua 

with 2-VEV, where one belongs to the PNB Higgs and the other belongs to the 
NGB field. 

Summing up Eq. (28) and (67) gives 
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 (
  

( )
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  ( )
+     ̃( )     

( )
 (

  
( )

  ( )

  
( )

    
( )

+  (68) 

where each VEV (i)
0, i = 1,2 is shifted by both Higgs and NGB indicating the 

existence of a double vacua with a 2-VEV system [22-23]. 

4.2 NGB-Dual Higgses Masses from Triplet-Triplet Splitting 

The triplet-triplet splitting potential is obtained with the aid of Eq. (27) and (62) 

and it indicates the emerging of a massive particle which can be either a PNB 

Higgs or an NGB-dual Higgs. 

Let’s start by rewriting the potential as, (i,j = 1,2),  
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Substituting Eq. (28) and (67) into Eq. (70), neglecting mixed terms such as 

  
( ) 

   
( )

  
( ) 

 ( )    ( )   
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  and 
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 ( )  
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( )

 (this produces the terms (      
 ) (       

 ) and their 

linear combinations, which facilitate double vacua with double shifts as shown 

by Eq. (68) and can be regarded as NGB shift symmetry [23]), one can simplify 

Eq. (70), replacing     
( )

 with  ( ), as 
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The first term gives the constant, the second term the mass term, as follows, 
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where the mass term         has no influence from NGB as shown by the no-

NGB term in the second term. One names        ( )       as the first NGB-

dual Higgses with the following mass squared, 
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where  .    
    ( )

/  (      )    is the SU(3) coupling constant and  ( )is 

the cut-off scale. 

On the other hand, one can also substitute Eq. (28) and (67) into Eq. (71), 

(neglecting mixed terms such as   
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, based on the same reason as 

above), replacing     
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 with  ( ), to get 
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The first term is a constant, while the second is the anticipated mass term as 

shown below,   
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         (76) 

where one finds that the mass term         in Eq. (76) is obtained from the 

combination of Higgs and NGBs as shown by the second term in Eq. (75), 

which is actually the second NGB-dual Higgs,        , having the following 

mass squared, 
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where  (        
)  (      ). 
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Both the PNB Higgs and the NGB-dual Higgses become the basic constituents 

of exotic scalars. The formation of the NGB-dual Higgses from a Higgs and 

NGBs, including the mass generation, requires a new mechanism, which will be 

discussed in a separate paper. 

Before closing this subsection, note that Eq. (77) shows a stand-alone free 

NGB-dual Higgs, which can be regarded as an exotic single scalar that can also 

serve as candidate for a relic dark matter [24]. Nevertheless, one also faces the 

hidden NGB-dual Higgs, which can be found as a bounded scalar, joined with 

either a PNB Higgs or itself, to form exotic multi-component Higgses and 

scalars. This will also be discussed in another paper [22]. 

Based on Eq. (69), adding up the mass squareds in Eq. (74) and Eq. (77) with 

multiplying factors 2 (two) and 1 (one) respectively, one immediately retrieves 

Eq. (56), the mass squared of the exotic multi-component Higgs, which is now 

shown as a 3-scalar Higgs. 

5 Duality of NGB-Dual and PNB Higgses in a Double Vacua 

One can rewrite the sextet VEV in Eq. (7), similar to the linear sigma model, by 

adding the shifts in the upper (lower) triplet and non-zero VEV in the lower 

(upper) triplet as follows, 

 (    
    )  (    

          )
   

 (       
 )  (          

    )
  (78) 

which yield NGBs    and    and Higgses    and   . After triplet-triplet splitting 

the sextets in Eq. (78) become 2 (two) sets of triplets, as follows, 

 (
 
 

  
    

+    (
 
 
 
+         (

 
 

  
    

+    (
 
 
 
+  (79) 

Eq. (79) reflects the main property of a double vacua, where fi’, i = 1,2, in the 

first vacuum, develop a non-zero value and experience the shifts i, which 

become strongly-coupled simplest little-like Higgs (i)
. On the other hand, the 

second vacuum remains in zero VEV but suffers from the shifts 0
 and ’, 

which become NGBs, (j)
NG, j = 1,2. 

Recalling the potential in Eq. (31) and Eq. (54), with (i)
, (j)

’, i,j = 1,2,
 
which 

reflects a single-vacuum Coleman-Weinberg potential, one obtains the strongly-

coupled heavy multi-component PNB Higgs in Eq. (56). On the other hand, Eq. 

(72) and Eq. (75) with (i)
, (j)

NG or (i)
0, 

(i)
NG, which reflect a double vacua, 

produce the components of the multi-component Higgs, the NGB-dual Higgses, 
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via a generalized Coleman-Weinberg potential. Eq. (79) exactly resembles Eq. 

(68) if the following correspondences are established, 

  .  
( )

  ( )/   (

 
 

  
    

+            (80) 

     
( )

 .  
( )

    
( )

/    [  ] (
 
 
 
+       , (81) 

where NGB shift symmetry has been utilised in Eq. (81). 

In the context of a double vacua one immediately finds the duality between 

strongly-coupled heavy PNB Higgs, H”, in Eq. (56) and 3 (three) NGB-dual 

Higgses, 2H”ng.1 and 1H”ng.2, in Eq. (74) and Eq. (77), which exactly resemble 

Eq. (56). The second behaves like the components of the first, which happens if 

the shifts take place in the second vacuum with zero VEV. On the other hand, 

the first happens if the shifts take place at non-zero VEVs in the first vacuum. 

Just like wave-particle duality, Nature will decide which type of Higgses will 

emerge, whether from a double-vacua or a single vacuum. 

To conclude, the duality of Higgses is the consequence of vacuum 

configuration, either as single vacuum or double vacua, where each vacuum has 

equal probability to develop shifts with respect to zero (non-zero)-VEV 

vacuum. 

6 Conclusion 

Global symmetry SU(3)CHSU(3)PHU(1) as the result of SU(6) symmetry 

breaking by the will-be simplest little Higgs scalar opens further breakings in at 

least two patterns, i.e. one-by-one and collective breakings. The first produces 

two massive scalar-pair Higgses, while the second one produces a large-mass 

Higgs. In comparison with the previously mentioned result and also with 

Higgses derived from the SU(6) baby Higgs, it can be concluded that the 

collectively-broken Higgs is actually a 3-scalar. 

A similar result can be obtained alternatively via a generalized Coleman-

Weinberg potential, where NGB-like scalars replace the two will-be simplest 

little Higgs scalars in a non-quadratic-based quartic potential. The only 

difference is that now the mass squareds emerge as the components of the mass 

squared of the strongly-coupled 3-scalar Higgs. Here, two types of NGB-dual 

Higgses are found. 
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This phenomenon brings us directly to a double-vacua system, where the first 

vacuum yields Higgs fields and the second vacuum yields NGB fields. As a 

consequence the duality between the two types of Higgses emerges, i.e. a 3-

scalar Higgs from a single vacuum and 3 (three) NGB-dual Higgses as the shifts 

with respect to non-zero and zero VEVs in the first and second vacuum 

respectively of the double vacua. 

Further research must be performed to analytically ascertain the above 

conclusion, including a verification of the Higgs wavefunction. 
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