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Abstract. The damping effect of the interaction of high-frequency amide-I vibrations with the low-frequency acoustic vibra-
tions of the protein is investigated. The phenomena studied phenomonologically by extension of the nonlinear Schrodinger
equation. By introducing a local approximation, the damping factor can be expressed as a new term iy¢ in the nonlinear
Schrodinger equation. The result show that the soliton with damping propagate slower than original one. By introducing a
periodic external force, the equation of motion is described by the force-damped nonlinear Schrodinger equation. Solution
based on the variational methods show that the Davidov’s soliton will be accelerated by a periodic external force.
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INTRODUCTION

The bio-energy transport is basic mechanism in a life
and related to many biological activities. The bio-energy
needed are mainly provided by that released in adeno-
sine phosphate (ATP) hydrolysis in living system and the
model of the phenomena such as Davydov’s, Tekeno’s,
Yamosa’s, Scheitzer’s, Cruzeiro-Hansson’s, Forner’s and
Pang’s model have been developed [1]. The first model
that is called Davydov proposed the mechanism through
a nonlinear mechanism from the storage and transfer
of vibrational energy (intrapeptide vibration amide-I)
in alpha-helical proteins [2]. The interaction of high-
frequency amide-I vibrations (vibrations of double C-O
bond of peptide groups) with the low-frequency acoustic
vibrations of the protein is a self-trapping of the amide-
I vibration [2, 3]. The propagation of self-trapping plus
the deformational lattice together can travel over macro-
scopic distances along the molecular chains, retaining
the wave shape, energy and momentum. In this way, the
bioenergy can be transported as solitary waves or soli-
ton. Soliton is the equilibrium between nonlinear effect
and dispersive effect. The other hand,in classical lattices,
the anharmonicity gives rise to the occurence of intrin-
sic localized modes [6]. The measurement of infrared
absorption and Raman’s scattering of an crystallineac-
etanilide (CH3CONHCgHs ), at low temperature shown a
new band that closed to amide-I band [7].They interpret

that this is a signature of Davidov’s soliton. Experiment
using femtosecond IR spectroscopy show that a band of
amide-I from accetanilide (ACN) and N-methylacetanide
(NMA) show absorption spectrum depend on tempera-
ture. At high temperature, absorption spectrum will shift
to higher frequency [8].

The paper studis the effect of damping and an external
force on the propagation of Davydov’s soliton. The phe-
nomena studied phenomonologically by extension of the
nonlinear Schrodinger equation. The Davydov’s model
of alpha helix protein is described in sec-2. Derivation
of equation of motion describing Davydov’s soliton and
its behaviour in an inhomogeneous medium is given in
sec-3. The paper is ended by a summary.

DAVYDOV’S MODEL

Davydov’s model describe a vibrational energy of the
C=O0 stretching (or amide I) oscillator that it localized
on the helix chain and act through a phonon coupling
mechanism, to deform the structure of the amino acid
residue. The deformation of amino acid residues reacts,
again through phonon coupling, to trap the amide-I vri-
bational quanta and prevent its dispersion. The Hamilto-
nian of the system can be written as follow [1],

H :Hex+th+I—[int
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where gy = 0.205¢V is the exciton energy, B, + (B,) is
the exciton creation (annihilation) operator at the nth site
with an energy &, J is resonace (dipole-dipole) interac-
tion, D is the coefficient interaction of the exciton, P,
and u, are the momentum and coordinate operator of
phonon ( peptide group) and y is the coupling constant
between the exciton and phonon. By using the trial func-
tion |y >= [¥ > |® > in which |¥ >= Y a,B,[ |0 > a
single of the amide-I excitation and |¥ > is the coherent
phonon state then the average value of A which respect
to the product wave function (< y|H|y >) leads,

=X(But1 = Ba)On —J (D1 =200+ 1) (2)
= W(ﬂnJrl _Zﬁn +ﬁn71) + Q% (|¢|2 - |¢I171|203)

where a, is a complex number representing the prob-
ability amplitude for finding a quantum of amide-I, <
D|u,|® >= B, and < ®|P,|® >= 7, are the average
value of the longitudinal displacement and momentum
of a phonon. ¢, = a,exp(it(€p — D — 2J+w)) is a gauge
transformation. By assuming a stationary solution (B,, =
0) give the discrete nonlinear Schrodinger equation

i,
M,

ﬁa¢,,
"o

(¢n+1 2¢n+¢n 1)+7|¢n‘ ¢n— ) (4)

where the corresponding lattice (phonon) distortion is
given by,

Bui— By =~ |0 5)
w
In the continuum approximation the equation become,
a¢ J 9%¢
—t s+ = =0, 6

with / is a lattice constant. The single soliton solution is
given by [1, 2],

Ayl w2y
—Vt i("5-x—ot) 7
\/2WJ(X )} ¢

with the relation @ = (x2)/(4wh)A> — (1)) (4R)V?. If
the B3 is not stationers, the equation of motion in the form
of Nonlinear Kline-Gordon equation where have a kink
solution. The solution showed that the bio-energy cannot
disperse and dissipate in the transport processes.

o (x,1) = Asech { @)

PROPAGATION OF DAVYDOYV SOLITON
IN AN INHOMOGENEOUS MEDIUM

The interaction of a system with its environment is given
by the dissipation effect in quantum system. The be-
haviour of the system has attracted many interests in the
last decades. The termal effect can be accomodated by
adding new term in the Nonlinear Schrodinger equation
as follow [9],
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Following [9] by introducing a local approximation, that
is, neglecting space coordinate correlation, the damping
factor can be expressed as T'(x —x') = y6(x —x/), the
equation of Davydov’s soliton become,

99(x,0)  J I*P(x,0)
o Yo T ”Y“’(x 0+
oo OPe()=0. (9
The solution of the equatlon is [9]
O (x,t) = Asech [\;\;CTIJ()C— Vt)} ei<mil/x(“’i7)’)(.10)

The damping coefficient y is the reciprocal lifetime of
excitation. Estimation of soliton velocity is about V' ~
3x10* ecm s~! coresspond with spectral frequency m
=16cm~' [1].

Recents year, there is a new transformation to solve the
damped nonlinear Schrodinger equation that proposed by
[10]. Let, Eq.(9) can be written as,

200 0L )+i7¢<x,t>+b|¢<x,r>|2¢<x,r>(—Mo),

where a =J/(hl?), y=hy, and b = x?/(2wh). By using
transformation [10],

¢x,1)

the equation become,

=®(x,1)e" (12)

8‘13(x t) 9°®(x,1) 25 3
o +a 2 +be* V| D (x,1)|* P (x,t) =0 .

(13)

By using Taylor expansion in the exponent factor,

then Eq. (13) become homogeneous NLS W¥({,7)

with transformation coordinate and fucntion respec-

tively ¢ = p(t)x, © = p(t)t, p(t) = (1 — 2yt) and
¥ =//p(t)exp(—iyp(1)x*/(2a)) [10].

If the system drive by an external force such as elec-
tromagnetic for example, the equation of motion can be
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written as,

2
ia(bg’t) +q? gg’t) i (x,1)

+8O(x,1) +bld (x,0)[* 9 (x,1) = Eoe ¥ . (14)

By using transformation,
9(x,1) =W(x)e ™, (15)
Eq. (14) become,

O¥(x,1) PP (x,1)
o T ow
+iP P (x,1) + b|¥(x,1) PP (x,1) = Ep, (16)

+ K2 (x,1)

where k2 = Q+ §. The equation has interested of many
scientist and they studied its stability, bifucrcation and
their bound state of propagation of soliton [11]. The
equation can be written in_the better form by transfor-
mation ¢ = k¢, ¥’ = kx, Eg = —Eo/x>, ¥ = 7/x2, and
¥ =y [11],

dy Py 2y = E
i= 5 TY ) 20y )Py = Eo.

(17

In the term of traveling wave soliton z = x' — V¢, the
partial differential equation become the ordinarry differ-
ential equation. By assuming stationary solution then we
can get the driving strength £ as follow [11],

— V2cosh?y

= 18
0 (14 2cosh?y)3/2 (1%

By using numerical methods of an ordinary differential
equation, the parameter £y can be used as a studies
of an initial conditions. We use widely accepted values
for the physical parameters for the alpha helix protein
molecules [2, 1], J=1.55 x 10722, w=(13-19.5) N/m,
M=(1.17-1.91) x 1072° kg, y=62x10"'2 N and /=4.5
x 10719 m. The solution of Eq.(10) is depicted in Fig.1.
The result show that the soliton with damping propagate
slower than without damping effect. The solution Eq.(10)
show that the damping effect does not contribute into the
amplitude of soliton. The dissipation effect in the term of
i can be viewed as driving (forcing) or damping of the
soliton solution.

Interestingly, suppose if we consider a propagation
of Davydov’s soliton in a viscous medium. If we treat
the medium is a classical object then it can be done by
replace the term of iy by yd¢ /9t in Eq.(14) with § =0.
We get the equation as follow,

00(x,t)  P*o(x,t)  _d(x,1)
ot T e o1
+b]¢ (x,2)|* ¢ (x,1) = Ege ¥ .

(19)

This is called the forced damped nonlinear Schrodinger
equation (FDNLS). The solution of the FDNLS can be
found by means of variational methods based on the La-
grangian formulation [12]. Based on the corresponding
variational methods to solve the damped-forced nonlin-
ear Schroedinger equation, one can use the single soliton
solution as the related basic form and considering its am-
plitude, width, phase velocity and the position of the soli-
ton to be time dependent [12]. Let us write the 1-soliton
in the following form,

¢ (x,2) = n(e)sech[n(x+ S (2))lexp (=[O0 ()x + ¢ (2)]) -
(20)
The dynamics of 17, 6, { and ¢ function can be ob-
tained by using the variational methods. By construction
of the Lagrangian,

L =300 —90)—alo P +blof

VB9 —9797) = (fO" + 179). €2y
where f = Eope ™ and substituting into
the  Euler-Lagrange  equation using L =
5. LdE, o osech(aé)déE = m/a and
[, sech?(a&) tanh(a&)dE = 0 yields,

: oF OF
1+ipné—4a6 = 2= -2 (22
(1+iy)nC —4ab oy~ a8 @

L +iy)g —4(a02—bn2)=¢9F _IF
(I+iy )o —4(a n°) Cag N F(23)

where

F= [ (fel®rol o e 00) sechfn (x - ¢l
(24)
Numerical methods by using Runge-Kutta methods is
used to study this equation. Soliton solution of Eq.(19)
by using variational method is depicted in Fig.2. The re-
sult show that Davidov’s soliton accelerate by an periodic
external force. Study of propagation of Davydov’s soli-
ton have been studied by montecarlo simulation [1]. The
thermal reservoir at temperature 7 is done by added a
damping force and noise force (F,, = —mI' 3, + n,). This
extension converts the dynamics equation of the molec-
ular displacement to Langevin equations. The effect is to
bring the system to thermal equilibrium [1]. The study
of thermal equlibrium can be done only in the term of
statistical mechanics approach. It’s still in progress.

SUMMARY

The propagation of Davydov’s soliton in an inhomoge-
neous medium is investigated. By introducing a local
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FIGURE 1.

approximation,the damping factor can be expressed as
a new term iy¢ in the nonlinear Schrodinger equation.
The result show that the soliton with damping propagate
slower than without damping effect. It’s mean that the
damping effect does not contribute into the amplitude of
soliton. This term can be viewed as a driving (forcing) or
a damping of the soliton solution. Studies of Davydov’s
soliton in a viscous medium can be done by treating a
classical object i.e. replace the term of iy¢ by yd¢/ot.
By introducing a periodic external force, the equation
of motion is described by the force-damped nonlinear
Schrodinger equation. Solution based on the variational
methods show that the Davidov’s soliton will be acceler-
ated by a periodic external force.
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FIGURE 2. Davydov’s soliton with dissipation effect and an external force.
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