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Abstract

The equation of motion governs fluid flows is well known as the Navier-Stokes
equation. Most researches on fluid dynamics are mostly dedicated to get the solu-
tions of this equation with particular boundary conditions, because of difficulties in
obtaining exact solutions for this kind of nonlinear equation. The gauge field theory
is the most popular field theory and widely accepted as a basic theory in elementary
particle physics. We then attempt to reconstruct the Navier-Stokes equation in the
same manner as gauge theory. Using a four vector potential A, with appropriate
content describing the fluid dynamics, i.e.A, = (P, /T), we show that it is possible
to construct the Navier-Stokes equation from a gauge invariant bosonic lagrangian
Lys = —iF wF" + 97, A". The Navier-Stoke equation is obtained as its equation
of motion through the Euler-Lagrange equation.

Further, we present the application of the theory, i.e.the propagation Davydov
soliton immersed in fluid system and the theory of turbulence. The propagation of
Davidov soliton in fluid system that can be described by the Lagrange density which
is similar to the quantum electrodynamics for boson particle. In the static condition,
the Lagrange density is similar with the Ginzburg-Landau lagrangian. If fluid flow
parallel to soliton propagation, the phenomenon is described by the variable that
is a coefficient in the nonlinear Klein-Gordon equation. Behaviour of the solution
in term of single solution is also given. Finally, concerning the similarity between

the statistical mechanics and the fields theory we construct the theory of turbulence.

viii4+-30 pp.; appendices.
References: 35 (1961-2005)
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Chapter 1

Introduction

Two of seven Millennium Prize Problems are:

5. The Yang-Mills Ezistence and Mass Gap

6. The Navier-Stokes Existence and Smoothness

It is a famous open question whether smooth initial

conditions always lead to smooth solutions for all times:

a 1,000,000 US dollar prize was offered in May 2000 by

the Clay Mathematics Institute for the answer to these questions.

(http://encyclopedia.thefreedictionary.com/)

1.1 Background

The fluid dynamics still remains as an unsolved problem. Mathematically, a fluid
flow is described by the Navier-Stokes (NS) equation [1]:

g—fﬂﬁﬁ)ﬁz—%ﬁp—ﬁ%, (1.1)
where ¢ is fluid velocity, P is pressure, p is density and p is the coefficient of
viscosity. This equation is derived from the Newton’s second law for fluid and is
naturally nonlinear. This nonlinearity makes the system to be a complex and hard to
handle because the lack of its simple superposed solutions. In a nonlinear system the
solution does not obey a vector space and can not be superposed (added together)
to produce new solutions. This makes it harder to solve than in a linear system.

In principle, the study of fluid dynamics is focused on solving the Navier-Stokes

equation with particular boundary conditions. Mathematically it has been known
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as the boundary value problem. The most difficult problem in fluid dynamics is
turbulence phenomenon. In the turbulence regime, the solution for the Navier-Stoke
equation has a lot of Fourier modes, so that the solution is untrackable numerically or
analytically. It is predicted that the strong turbulence has 10*° numerical operation
[3]. We need another approach in fluid dynamics rather than the conventional one.

This thesis treats the fluid dynamics differently than the conventional point
of view as seen in some fluid dynamics textbooks. In this approach, the fluid is
described as a field of fluid buch. We use the gauge field theory to construct the
fluid dynamics in a lagrangian. Objective of the research is to build a Langangian
which can reproduce the Navier-Stoke equation as its equation of motion through

the Euler-Lagrange principles by borrowing the gauge principle.

1.2 Overview

This thesis is organized as follow. The introduction and background of the problem
are given in chapter one. Then a brief story of fluid dynamics will be described in
chapter two. In the subsequent chapter we give a short review of gauge field theory.
The main part is presented in chapter four. The discussion will be given in chapter

five followed by summary.



Chapter 2

Fluid Dynamics

"We still do not understand how water flow’.

Richard P Feynman

In this chapter we describe the fluid flow briefly. Fluid dynamics is a branch of
physics to study fluid (liquid or gases) flow. Fluid is a macroscopic phenomenon,
that can be considered as a continuum medium. This implies that an element of
fluid is small enough and can be treated as an infinitesimal. But it still contains
a lot of molecules such that we can treat it as a macroscopic phenomenon. From
this point of view, if we consider a fluid displacement, it is not the displacement of
individual molecule but the displacement of a fluid element which contains a lot of
molecule. The mathematical description of fluid flow obeys two description i.e.the
Lagrange description and the Euler description. In the Lagrange description, fluid
flow is described by a trajectory of fluid element. In the Euler description, fluid
flow is described by a function of space and time. In this thesis we use the Euler
description.

The fluid is characterized by two parameters, fluid velocity #(Z,t) and fluid
density p(Z,t) and the behavior of fluid flow obeys two laws, i.e.the conservation of
mass and the conservation of momentum. A brief explanation of these laws is given

below.



2.1 The Conservation of Mass

The conservation of mass means that fluid can be destroyed or be created. If we
perturb fluid, the initial and final masses should remain the same. Let us consider
a finite volume (V') of fluid with S is a closed surface of the finite volume (V). The
mass of fluid in a finite volume is | [ [ pdV. The mass of fluid flow through a closed
surface is ¢ pdS. The conservation of mass means that the incoming and outgoing
flux of fluids are conserved per unit time in a finite volume (V'). The statement can

be written as:

0

%(pﬁ) -dS = 5 pdV (2.1)

Using the Gauss theorem, the left hand side becomes,

S 0
/V-(pv)dV = —at/pdV

/{%jﬁ-(pﬁ)] v = 0, (2.2)

This is called as the continuity equation.

2.2 The Conservation of Momentum

The conservation of momentum is just the Newton’s second law. For a point par-
ticle with mass (m), then the law tells that m%L = F', where & is the position
of point particle. Expansion to fluid flow obeys m — p and the acceleration be-
comes d?Z/dt* — Dv/Dt with D/Dt = /0t + ¥+ V which is called as the material
derivative.

The fundamental force in fluid flow is the stress gradient that can be written as

follow,
= _iH. (2.4)
i — a.ﬁ(]k ik .
where the stress tensor Il;; is given by,
Wix = Poig — o, (2.5)



where P is again pressure and oy is viscosity tensor. The viscosity tensor is an
asymmterics tensor generally. This tensor can be derived from molecular point of
view through the transport Boltzmann equation. The viscosity tensor can be written

as [4],

o 8UZ 8Uk 2 8Ul aUl
% = H <6:ck T o é%—x,) TV (2.6)

where p and v are the kinematic and dynamic viscosity coefficients respectively.
Substituting Egs. (2.6), (2.5) and (2.4) into the Newton’s second laws for fluid we
get,
oL - o 1\ =, - .
p §+(v.v)v = —VP+ pv=o+ y+§,u V(V 7). (2.7)

This is called as the Navier-Stokes equation that governs the fluid dynamics.



Chapter 3

Gauge Field Theory

"The most incomprehensible thing about the world is

that it 1s at all comprehensible

Albert Einstein

Gauge field theory is a theory of field which is based on the gauge principles
i.e.the theory is required to be invariant under a particular local gauge transforma-
tion. To illustrate this concept, let us consider a complex scalar field ¢(x) in the
Minkowski space-time. The lagrangian density of this field with potential V' can be

written as follow [5],

L(¢,0,¢) = (0"¢")(0u0) = V(¢"0) - (3.1)

If we impose a transformation,
¢ — ¢ =e"9, (3.2)

where 6 is an arbitrary real constant, it’s easy to show that the lagrangian density
is invariant under this transformation. The transformation e=% is called the global
gauge transformation. Using Noether’s theorem we have a conserved current (see

for example [6]),
T = ¢0"¢" — ¢" 0", (3.3)

which satisfies,

8,T" =0. (3.4)



How about the local gauge transformation ? The local gauge transformation can be

written as [5],
b— ¢ =e Wy (3.5)

Under this transformation, the lagrangian density in Eq.(3.1) becomes,

L(¢, au(b) — L
= (0"07)(9u0) = V(97¢) + (9"9")(0,9)(9,00"0 4 0,0 — 9"0) (3.6)
which is clearly not invariant. In order to make the lagrangiant to be invariant, we
must replace 0" by a suitable transformation in the same manner as ¢. Then, let us
define a vector fields A*(x) that is usually called 'gauge field” with the transformation

rule [5],
A — A= A* + 0", (3.7)

and the covariant derivative is,
Dr= 0" +iA". (3.8)
Imposing the local gauge transformation,
Dhp — [0" +i(A* +0")] e ™o = e 0 ¢ —ie Pp0"0 +ie " A'¢ 4 ie P pO"0
= e 0O +iAM)

= e Dry (3.9)
D,¢* — eD,o". (3.10)

This shows how the covariant derivative is transformed in the same manner as ¢.

Replace 0" with D*, therefore the lagrangian becomes,

L(¢,D"¢) = (Dug")(D"¢) = V(¢79) (3.11)

Now, our theory is invariant under a local gauge transformation, and we have a

gauge field theory.



3.1 Abelian Gauge Field Theory

The lagrangian in Eq.(3.11) is not a closed dynamical system due to A* which has
newly been introduced an external field. To realize the boson field A* to be a
physical field, we must introduce the kinetic term for A* but it should be invariant

under the same transformation. This can be achieved by the form [7],

1 vV
CZ_ZFM FMV ) (312)
with
Fr =0l A” — 0" A" . (3.13)
Finally the total lagrangian becomes,
1
La=(Dud") (D) = V(9°¢) = 7 F"Fpy . (3.14)

This is the lagrangian (density) for a closed dynamical system that is invariant under
a local gauge transformation.

This set of local gauge transformation forms U(1) group. So the theory in
Eq.(3.14) is called as the U(1) gauge theory. The local gauge transformation can
also be written as ¢ = e~9%®) ¢ where ¢ is a coupling constant. This kind of gauge
theory is also called as abelian gauge theory since g forms a commutative algebra.

Introducing g, then A* transforms as,
A — A= A" + g0"o | (3.15)
and the strength tensor in Eq.(3.13) transforms as,

P — F'™ = 9r(AY +igd"0) — 0" (A" + igd")
— OFAY — AP +igd 0”0 — igd 00
= A — AP
= (3.16)

that is invariant.



The lagrangian density in Eq.(3.12) is still invariant under this local gauge trans-

formation. An important relation between D, and F),, is given by,

D,,D,)] = D,D,-D,D,
= (Op+iA)(0, +1iA) — (0, + 1AL (O + iAL)
= 0, A, —i0,A, +i*AA, —iPALA,
= (0, A, —9,A,) +i°[A,, A
= iF, (3.17)

This relation can be obtained with a commutative relation [A,,, A,] = 0. This rela-
tion can be used to prove a lagrangian is invariant under a local gauge transformation

or not.

3.2 Non-Abelian Gauge Field Theory

We extend the algebra explained in the preceeding section to the non commutative
(non abelian) algebra. The formalism can be used to describe a system of field
(matter field) that generally contains multi-component field. The non abelian gauge

transformation can be writen as [8],
U =Tl (3.18)

where T)s is a set of matrices called as generator belongs to a particular Lie group
and satisfy certain commutative relation [T, Ty] = ifapeTe.  fape is the structure
constant that is completely anti-symmetric. The algebra satisfies this relation is
known as Lie Algebra [7].

To get a non abelian field that is invariant under a local gauge tarnsformation, we

must find similar relation to Eq. (3.17). This can be accomplished by introducing,
D, =0, +iglL A}, (3.19)

where ¢ is again the gauge coupling constant. Then the commutative relation for



D, is,

D,,D,) = D,D,—-D,D,
= (O +igTo A% (D, + igTuAL) — (B, + igTuAL) (9, + igT,AL)
= igTL (0, A — 10, A% + i g* T2 (ALAS — AL AY)
= igTa (0, AL — 0,A%) + ig[As, AL
= igT,Fy, . (3.20)

The corresponding element of the Lie algebra T, F}, = Fj, is given by,
R, = 0" AL — 0, A% +iglAj, ATl (3.21)

or
Fo = M AL — 9,A% — g™ AL A (3.22)

The commutative relation for a covariant derivative is,

[D,,D,] = igF® (3.23)

w3

where F}, is given by Eqgs.(3.21) or (3.22). With this condition the lagrangian
density becomes,

£ = L pow o (3.24)

4 w
which is invariant. The theory is called non abelian gauge theory or Yang-Mills field
theory. The famous example of non abelian gauge theory is [8],

N - a, a 1 a apyv
‘CNA = wa)/“(aﬂw) - mwi/”p + gJ ﬂA,u - ZFHVF . (325)

For instance, in case a = 8 it is well known as quantum chromodynamics (QCD).
This theory is used to explain the strong interaction in hadron physics. The la-
grangian of non abelian gauge theory include self-interaction among of gauge fields
Aj, through the term g f “bc.AZ.Afbu in F,. The self-interaction is the main source of

asymptotic freedom in quark chromodynamics [§].

10



Chapter 4

Navier-Stokes Equation from
Gauge Field Theory

"We believe the unity of physics”
P.A.M Dirac

This chapter is the main part of this thesis. In this chapter we describe the
Navier-Stokes equation using gauge field theory. This can be done through building

the lagrangian in the similar manner as the preceeding chapter.

4.1 Maxwell-like equation for Ideal Fluids

The abelian gauge theory U(1) is an electromagnetic theory that reproduces the
Maxwell equation. To build a lagrangianan that is similar with a abelian gauge the-
ory, we should ’derive’ the Maxwell-like equation from the Navier-Stokes equation.
The result can be used as a clue to construct a lagrangianan for fluid that satisfies
gauge principle. Considering the Navier-Stokes equation Eq. (2.7) for an ideal fluid
and incompressible condition,
p (% i (m)ﬁ) _ _p. (4.1)
V-7=0. (4.2)
Using the identity ¢ x (V x @) = V(30?) — (- V)7, the Navier-Stokes equation can
be written as,

o (1 - -
8—:+V<§172)—17><(V><17):— VP, (4.3)

11



and then,
ov

ot

Since the scalar potenstial & = %6’2 + % , the vorticity & = V x ¢ and the Lamb’s

<

(1
:ax(xm—v<?ﬂ+ (4.4)

P
P
vector [ = & x U, the equation becomes,

ou
ot

0w -
8—°::—v><(w><17). (4.6)
To get the Maxwell-like equation for an ideal fluid, let us take divergence oper-

ation for Eq. (4.5),

(V-7) = —V-1—7®

V0 =

SIS

.0 (4.7)

eyl

In this result we have used an incompressible condition. The divergence of a vorticity

is always zero (by definition of the vorticity), i.e.
7.5=0. (4.8)

Again imposing curl operation, we have:

%(ﬁxg) L - T x (F0),
o] R
N
t
[ = —— 4.9

where we have used the identity V x (V- ¢) = 0.
Now, let us consider the definition of the Lamb’s vector =& x 7. Taking the
derivative 0/0t in the definition we obtain,
ol 95 v

azaxv—i—WXa. (410)

12



Substituting Eq. (4.5) and (4.6),

ol 3} ,
pr =2 (Vxd) -7, (4.11)
or,
_ L ar
YV X3 =qaj — 4.12
xG=aj+ag, (4.12)
where,
1
a = = (4.13)
jo= —0V0+ [Vx (7-&)]0+3 x V(O + %) +2[(Vxv) V] 7. (4.14)
So, we have Maxwell-like equation for fluids as,
V-l = p, (4.15)
R 0w
VXl = —— 4.16
V-d = 0, (4.17)
VXW = ] —. 4.18
X aj + o, (4.18)

Analogue to the electromagnetic field, we have [ corresponds to E and & corre-
sponds to B. Conventionally, the vector E and B can be written in term of scalar
potential ¢ and vector potential A as, E = —ff/@t — V¢ and B=vVxA. Therefore,
it implies that A should correspond to . Using Eq. (4.5), we have,

—

= v —
l=—— -V 4.19
at Y ( )

such that ¢ corresponds to ®. If the fluid velocity is time independent, then [ =
—V®. This is the "electrostatic” condition.
We use these results to develop gauge field theory approach for fluid dynamics

in the next section.

4.2 Minkowski Space-Time Formulation

In the Minkowski space-time formulation, the diagonal metric tensor has elements
g% =1, g'' = ¢* = ¢* = —1. Now,we define a four vector A, as follow:

—

A, = (Ao, A) = (®, —7) (4.20)

13



where ¢ = %172 + V|, with V is a potential induced by conservative force. Further

we define the strength tensor as,
Fuw =0,A, —0,A, , (4.21)

Now we construct a lagrangian for fluid system. Fluid can be viewed as a gauge
boson that similar to gauge theory U(1). The Lagrangian for fluid can be written
as,

1
Lys = =3 FuI™ + 9J, A" (4.22)

where 7, is just a four-vector currents. To get the equation of motion we use the

Euler-lagrange equation,

OLns OLns
v _ =0. 4.2
0 6(8%4“) OAH 0 ( 3)

After a straightforward calculation, the second term gives,
OLns

A 9T, - (4.24)
For calculating the first term, we write the langangian explicitely in term of A,
1
Lns = =7(92)(980)[(0"A7 = 07 A") (A7 = 07 AN)] + g T, A" . (4.25)
Substituting it into the first term in Eq.(4.23),
OLys _ 1 0 5047 — 5 AN (P AP — 9P A
6(8”.»4“) - 4<gka)(g,30) 8(8”./4“) [(8 A 97 A )(a "4 d "4 )]
B (9> A7) vg O(07AY) s
= <g>\a)(gﬁo)[ (8”./4“)]: 8(8”A“)f
A 48 B AN
e OOPA) 00
a(or A*) (o A+)
- (gm)(gﬁg)[éa(soﬁﬁ §700FN + 8,00 F7 — 606, F] (4.26)
Due to the symmetry of g, and anti-symmetry of .7:“”, all four terms are equal,
OLns _ _Lizww (g v _ (R v
(0 Ar) 4[-7: (=F") +F (F"")] = ( FH) = Fu (4.27)

Then the Euler-Lagrange equation becomes,
0 = "Fu—-9TJ,
= 8y(8u“4v — 0, AL) — 9T,
= 0"0,A, —0"0,A,) —gJ, . (4.28)

14



Now integrating it over z”,
oA, —0,A, = g%dx,,jﬂ . (4.29)

For v = p we obtain a trivial relation. The non trivial relation is obtained for v # pu.

Calculation of its components gives,

OpA; — 0;Ag = —yg 7{ dzoJi = g 7{ dz;Jy . (4-30)
Since A; = —0, A, = ®, 9, = /0t and 9; = V. we have,
o - =
—— =V =—gJ 4.31
5 97, (4.31)
where J;, = $dxgJ; = — §da;Jy. Concerning the scalar potential given by & =
%772 + V', we obtain,
—— — =V = VV = —qgJ . 4.32
L g (4.32)
Borrowing the identity 1V 0)* = (- V)T + 7 x (V x 7), we get,
8?7 O TN — — - =
aJr(v-V)v:—VV—vxw—gJ, (4.33)

where & = V x ¢ is the vorticity. This result reproduces the general NS equation
with arbitrary conservative forces (VV).

The potential V' can be associated with some known forces, for example,

P
— :  pressure
P
=< @G .
v —m gravitation (4.34)
r —
(v+n)(V-9¥) : viscosity

Here, P, p, G, v + n denote pressure, density, gravitational constant and viscosity as
well. However we should put an attention on the potential of viscosity. We can
extract a general force of viscosity ﬁVViSCOSity = nv (ﬁ . 17) + v (6277) + v (ﬁ X J})
using the identity V x & = V(V - §) — V24. This reproduces both compressible and
incompressible fluids, while contributes to the turbulence fluid for non-zero &@.

From Eq. (4.29) we can write explicitly the expression for the 4-vector current
as,

Jo=p = -7- (aOA’— ﬁgzs) , (4.35)

J = ——¥x §><ff>—80(8off—ﬁ¢), (4.36)



Taking the time derivative operation to Eq. (4.35) and divergence operation to

Eq. (4.38) we get,

W= (R 0) (437)
F.J = —éﬁ- [ x (7 x 4] —é B4 -P@0)] . @)

or in the four-vector formalism it can be written as 9,J* = 0. Using vector identity
V-Vxada=0,
Z4+7-J=0, (4.39)
that is the continuity equation.

So far we obtain two fundamental equations for fluid dynamics. In the lagrangian,
g is expected to be small contant coupling (g((1). With this fact we can use a
perturbation method of field theory to perform any calculation in fluid dynamics
starting from the lagrangianan Eq.(4.22). For multi-fluids system we can expand it

trivially,

1
ENS = —ZFSVFCWV —+ gj/jAaH . (4.40)

This is similar to the nonabelian gauge theory.

4.3 Euclidean Space-Time Formulation

The Navier-Stokes equation is a classical one described in the Euclidean space-
time. It is useful to describe our formulation in Euclidean space-time (4-space). In
principles, Euclidean 4-space can be obtained from Minkowski 4-space by clockwising
the real axis in the complex z, plane into the negative imaginary axis [5]. If a position
in Euclidean 4-space is denoted by zr = (¢, Z), where z; is a real parameter. Then
the relation with the Minkowski 4-space x,, = (zo, —%) is given by zy — ix¢. Using

this replacement many relations hold, as
vy = aptal+ay g
—  (izo)® + 2} + a5 + 23
= (-7 %) =—atz,, (4.41)

d'r = —id'zg. (4.42)

16



The differential operator is then given by,

0 0 S0 S
Ou = 5r = o = (z P v) . (4.43)

For Euclidean vector, there is no difference between upper and lower indices. Thus in

the equation of motion we just replace z° by ixg and also the associated differential
operator. The Lorentz invariance of the lagrangian density is then replaced by the
invariance under O(4) rotation in Euclidean 4-space.

The gauge boson A, will be replaced by A,(zg) with real component according
to A; — A;(zg) and A, — tAy(zg). For example it turns the divergence of A, out
to be,
0A"  OA*

—

oxt oxt

B, A" =

— (i0mo, 7) - (iAO,fT> . (% _ 7. /T) L (4.44)

8370

Now, we reconstruct all previous formulations in the Euclidean 4-space. The equa-

tion of motion in Eq. (4.29) reads,
0A,(zE) B 0A,(zE)

© v
Ozly, oz,

——ig § d'ap T, o) (4.45)

As before, the non trivial solution is obtained for u # v,

O0A;  0Ag .
om0 i = —zg%dxoji . (4.46)
Using Ay = ®, A; = —u; and 2° = ¢ we arrive at,
8’17 1 — 2 _ =
9= - —qJ . 4.4
o 2V |v]” — VvV gJ (4.47)

—

Borrowing the identity 3V 0> = (T- V)04 T x (V x ©), the result is,

o7 ~ . -
8—:+(77-v)77:—v1/—77><&—g=f- (4.48)

This is actually the Navier-Stoke equation as derived in the Minkowski space, Eq.
(4.33).

17



Chapter 5

Discussion

A theory has only alternative of being right or wrong.
A model has a third possibility: it may be right, but irrelevant.
Manfred Eigen

5.1 Equation of Motion

Fluid dynamics is described by nonlinear partial differential equations called as
Navier-Stokes equation. Exact solutions are available just for few simple situations.
However, for the rest majority of situations, explicit solutions are not readily avail-
able. Moreover, it is not in general possible to solve the full Navier-Stokes equation if
the flow is turbulence. On the other hand, these types of flow are the most common
in nature. In the turbulence regime, the flow is characterized by chaotic unpre-
dictable change in space and time due to appearance of fluctuations with arbitrarily
small scale [9]. In this section we review field theory approach to fluid dynamics that
have been done by many researchers and then we compare them with our methods.

The work has been pionereed with the similarities between the equation of fluid
dynamics and those of quantum mechanics by Madelung more than 70 years ago
[15, 16, 17]. In these approaches, the lagrangian for the Navier-Stokes equation has
been constructed from the non-relativistic field theory. Starting from Schrodinger

equation, the lagrangian has been found to be [17],

Lo = [ dir(ivri - 3V Vo - V(e (5.1
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where ”dot” denotes time derivative. Imposing a transformation as,
Y =pze (5.2)

where p and 6 are real. We can obtain the new lagrangian as,

1
Lvs = [ dir{=pb = 5907 =V (o)} (53
where V(p) = V(p) + é(V@)Q. Substituting this into the Euler-lagrangian equation
we get,
dp
2 V- (pVO) =0, (5.4)
00 1._ ., &V
o ta(vVer -5 =0, (5.5)

where V' = [d%V (p). The equation Egs. (5.4) and (5.5) are called the continuity
and Navier-Stokes equation respectively. The transformation in Eq.(5.2) is usu-
ally used to study relationship between the nonlinear Schrodinger equation and the
hydrodynamics phenomenon such as difusivity, Chern-Simon hydrodynamics and
fractal hydrodynamics [16, 18, 19] .

The Lagrangian formulation for non-abelian fluid dynamics was proposed by
Jackiw which has been applied to the quark-gluon plasma [20, 21]. In this formalism,

the lagrangian density can be written as [21],
1
Lys = —j"a, + 5/)72 -V, (5.6)

where 2 = (ct, z, 9, 2), j* = (cp, p0'), a, = 0,0+ d,B and ¥V = VO+aV3. Again
using the Euler-lagrangian equation in term of p we get the Bernoulli equation,

00 95 1., 6[Vdr
o Yo TRV,

Taking the gradient we then obtain the Navier-Stokes equation.

~0. (5.7)

Another development is the application of gauge principles in the flow of an
ideal fluid proposed by T. Kombe [22]. A free-field lagrangian is defined with a
constraint condition of continuity equation and invariance againts the global SO(3)

gauge transformation. The lagrangian density is given by,
3 L o 9p -
Lys = [ da{5p0" = pe(p) + b5, + OV - (p0)} (5.8)
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where ¢ a scalar function as a Langrange multiplier and e the internal energy per
unit mass. The Euler-lagrange equations have been derived by varying ¢, v and
p. Using gradient operation we get the continuity equation and the Navier-Stokes

equation respectively,

dp L
00 1,

where h = e+ pg—;. This formulation works only for irrotational flow since curlv = 0.

Using ”gauge principles”,

the Navier-Stokes equation has been obtained,

o 1
8—: (VX 9) x T+ V(57) = ~Vh, (5.13)

Some authors use gauge principle in the Hamiltonian formalism to produce the
fluid dynamics equation [23, 24]. From this point of view, the dynamics of hydro-
dynamics system is described in the phase space of field and is determined by the
complete set of the Poisson brackets. We will not discuss of their formalisms further.

In this thesis, our approach is difference. We started with the similarity between
the Electromagnetism and Fluid dynamics. As done in Chap. 4, we have constructed

the Maxwell-like equation for an ideal fluid,

V-l = p, (5.14)
.= o]

Vxl = —— 5.15
V-d = 0, (5.16)
VX& = aj+a . 5.17
X ozj—l—aat (5.17)

The correspondences of the electromagnetism and the ideal fluid can be written as
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follow,

B o W,
— —
E < [ (5.18)
— —
A o U,
o < D,

— — —

where B is the magnetic field, F is the electric field, A is the electromagnetics
H

vector, ¢ is a scalar function, w is the fluid vorticity, [ is the Lamb’s vector, ¥/

is fluid velocity and & is the scalar potential. The same as the electromagnetics

—

field, we have a four vector A, = (¢, A) which can be constructed to be the four
vector for fluid dynamics, A = (®,7). In the electromagnetics field, the scalar
potential ¢ and the vector A is an auxiliary field, but in the fluid dynamics the
scalar potential & = %17'2 + V describes energy of fluid, while the vector v is fluid
velocity (a physical observable). Similar to the electromagnetics field, we construct

the lagrangian density,
1
Lns = —ZFWF“” +g9J, A", (5.19)

where,

Fow = 04 A, — 0,A, . (5.20)

Using the Euler-lagrangian equation we obtain the Navier-Stokes and the continuity

equation respectively,

ov - - >

8—:+(77-v)17 = TV —GxF—g], (5.21)
op - =
—+v-J =0 5.22
5+ (5.22)
Similar to the electromagnetics theory, we can define the energy-momentum
tensor as,
OLnNs

T, =0MA\——"—— guwlns - 5.23
. ‘o Ay) NS (5:23)

This is not a symmetric tensor. The symmetric tensor can be obtained by subtract-

ing a term involving the sum 9*A,F),, that is,
O = Ty — (A Frw = —FouFow — G FapF" . (5.24)
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For example, if we use "free” Lagrangian Lyg = —%F w ', an explicit calculation

gives the following component,

1
Op = _FAOF)\O_Zfaﬁfaﬁ
2 l2
_ .Y
+ 2
1
= §(w2+l2), (5.25)

where w = |V x §] and [ = | x 9]. These are called as vorticity and Lamb’s vector

respectively. Another components are given by,
H

and
1
@ij = — lzlj -+ wiWj — §5z]<l2 —+ wz) . (527)

5.2 Application of the Theory

In this section we describe an idea to apply the theory. The first topic is interaction
between soliton and fluid system. Soliton is a pulse-like nonlinear wave which
forms a collision with similar pulse having unchanged shape and speed [25]. The
wave equations that exhibit soliton are the KdV equation, the Nonlinear Schrodinger
equation, the Sine-Gordon equation, the Born-Infeld equation, the Burger equation
and the Boussiness equation. We only focus on the Sine-Gordon equation.

The Sine-Gordon equation appears in many area of physics. For example the
behavior of muscle contraction [26], one-dimension easy-plane ferromagnetics [27],
the self-induced transparency that describes the traveling of ultrashort pulses of

light though a resonant two-level optical medium [25] and the dynamics of « helical

protein [28].
Consider the lagrangian density,
L, 1,
L= §¢t — §¢m + cosg . (5.28)
Using the Euler-lagrangian equation, we get the Sine-Gordon equation,
P¢  0?¢ .
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In the traveling wave solution ¢ = ¢(x — vt) which corresponds to a rotation in ¢

by 27 (as x goes from —oo to co) have the form,

x—vt

o(a, 1) = dtan~Ve Vo] | (5.30)

The + sign is called soliton and the — sign is called anti-soliton.

Now, we rewrite the lagrangian in Eq.(5.28) as follow:

1 1
L= 56— 562+ V(9). (5.31)
where V(¢) = cos¢. Using Taylor series, we can expand the potential V' (¢) follow,
by 1y
V(@) = 5" — 50"+ (5.32)

if we take into account up to second order. Here m is the mass and A is the self-

interaction coupling. The potential becomes,

V(g) = 5p¢" — ¢t (5.33)

A
2 3
m¢+3!gb =0. (5.34)

This equation is called the Sine-Gordon equation (approximation) or the nonlinear
Klein-Gordon equation. The equation is a continuum version of the equation that
describes a propagation of molecular vibration (vibron) in a—helical protein. The
structure of a—helical protein chain can be seen in Fig. 5.1.

The vibration excitation in the a—helix protein propagates from one group to
the next because of the dipole-dipole interaction between the group. The wave is
called the Davidov soliton [28]. Davydov has shown that in a—helical protein soliton
can be formed by coupling the propagation of amide—/ vibrations with longitudi-
nal phonons along spines and that such entities are responsible for mechanism of
energy transfer in biological system [28]. The similar wave also appears in the DNA
molecules. An energitic solvent molecules (protein, drugs or some other ligands)
kick DNA and create an elastic solitary wave [29]. The solitary waves (soliton)

are described by the Sine-Gordon equation or the Nonlinear Schrodinger equation

30, 31].
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Figure 5.1: The atomic structure of a-helix in protein.

If a—helical protein immersed in Bio-fluid, then the phenomenon can be de-
scribed by the interaction of soliton with fluid system. Let us generalize the equation

Eq. (5.34) into four vector formalism,
9,0" — m*¢p + %qﬁ?’ =0. (5.35)
The equation has lagrangian density,
£= 20,0)0°0) - Bt + 2o (5.36)

We have developed that the fluid system can be describe by the lagrangian density,

1
Lng = _ZFWFW . (5.37)
Introducing the covariant derivative,
D¢ = (0, +1igA,)¢ , (5.38)

we can apply the gauge field theory approach. The interaction between soliton and

fluid system obeys the lagrangian,

1 1 > A
L= FuF*" + (D0)(D"6) + 0" + S (5.39)

We are also able to write the Lagrangian as,

1 1 2
£ == FuF* + S(Du9)(D*6) + Tr6” + V/(9). (5.40)
where V'(¢) = %gb‘l can be interpreted as a self-interaction potential.
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One interesting case is when we consider a static condition, i.e.0,f = 0 with f
is an arbitrary function. Substituting A, = (®, —7) and V'(¢) = 3¢*, Eq. (5.40)

becomes,
Ay
I(b . (5.41)

The lagrangian is similar with the Ginzburg-Landau free energy lagrangian that is

_ 1 o Lo e s
L= 2(V><v) +2|(V igv)o|” + 2!¢

widely used in superconductor theory [34].

We have seen that the phenomenon of a—helical protein immersed in fluid similar
with quantum electrodynamics for boson particle, while for static case it is similar
with the Ginzburg-Landau model for superconductor. To get an explicit calculation,
suppose we have one-dimensional velocity in z direction v = (u(x),0,0) and ¢ =
¢(z). Then the lagrangian in Eq.(5.41) reads,

m? A

L= S8~ sgwd 4 o = Dot (5.42)

Substituting it into Euler-lagrangian equation we arrive at,

2
fl Q; + ¢*uPp — m2o + gbg =0. (5.43)

We can write it in better form as,

d2 A
d—ﬁ —y(2)¢ + Egb?’ =0, (5.44)

where y(x) = m? — g*u(x)?. The equation is called the variable coefficient of non-
linear Klein-Gordon equation.
To solve this equation, first consider the fluid velocity is constant, i.e.u(z) = U,

then we have,
d?*¢
da?

where v = m? — g?U? and o = A\/12. The equation is similar with an-harmonics

—y¢+a¢’ =0, (5.45)

oscillation equation. The standard method to solve the equation is the perturbation
method. In this thesis we will solve the equation without a perturbation methods.

We use a mathematical trick as follows. First multiply it by d¢/dx,

do d?
d_id_;f_ ¢_¢ 06" % ¢ _0, (5.46)

25



then rewriting the equation as,

1 d dp, 7d¢®  add’

- 2 =0. 5.47
de[dx] 2 dx 4 dx 0 ( )

Integrating out this equation over x and putting the integration constant as zero

due to integrable condition lim, ..., ¢ = 0, the equation becomes,

do\* 5
<@) — 76+ 56" =0, (5.48)

and it can be rewritten further as,

/w&?wﬁ:/wgm’ 049

where 62 = 2. The left hand side is,

—hmﬁlglﬁ:¢§p (5.50)

J

Solving the equation for ¢ we get,

26 VE 26
1+ 672\/5533 6@51 + 67\/5533

) o
= W = 5sech(\/;5:p) . (5.51)

Thus, the solution for a homogeneous nonlinear Klein - Gordon equation is,

¢ =

¢(x) = Asech(Azx) , (5.52)

where A = % and A = 24)\%. This is depicted in Fig. 5.2.

The second application is the theory of turbulence. The phenomenon of
turbulence has been known for more than a hundred years but it remains to be
one of the unsolved problem of modern physics. Its formulation is simple. The

incompressible fluid is governed by two simple equation [1],

ov - -
p <8—: + (U.v)ﬁ) = —VP+ vV,

Vv o= 0, (5.53)
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Figure 5.2: Single soliton solution of the nonlinear Klein-Gordon equation.

for the unknowns ¢ and P (velocity and pressure). The problem is how to solve
these equations with the appropriate boundary condition to find the motion of the
fluid completely. But it is known for long time, it can be done for the laminar
flow which describes the small velocity. As the velocity increases, the flow becomes
unstable and the fluid swithches to a new regime of very complex motions with
the velocity pulsating almost randomly and without any noticeable order. The
important question is, what exactly is going on when the fluid is in such regime.
Recently the theory of turbulence lays on two main lines of research, i.e.the
dynamical system approach and statistical theory. The dynamical system approach
attempts to describe turbulence as deterministic chaos. The solution is usually
described by a strange attractor in finite region phase space. This approach is based
on simplified system of nonlinear evolution equations. Turbulence is expected to be

a generic feature of such system [3]. The second approach is the statistical theory
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of turbulence. This approach treats the velocity field as a random variable and
attempts to calculate correlation function [1, 32]. The final results is an hierarchy
of equation relates these correlation functions. Due to close correlation between
statistical mechanics and field theory, many researchers attempts to study turbulence
using field theory. Our formulation is field theory, so we might be able to treats
turbulence as a statistical theory approach. The turbulence flow is characterized by
fluctuating velocity which is a random variable.

To formulate turbulence flow using field theory approach we make an analogy
with statistical mechanics formalism. Consider a statistical mechanics system. The
system whics microstate (for example spin in ferromagnetics) can be specified by N
variable of spin denoted by s1, ..., sy. The dynamics of the system is usually studied
in term of the correlation function that is defined as [34],

1 9°Z2

(sisj) = zm , (5.54)

where Z = e PH is a partition function and H is the Hamiltonian of the system.
The famous model in the ferromagnetic research is the Ising model. J is related to
the magnetic field § by J = —ﬁﬁ. The thermal average of s;...s;, is called the
n—point correlation function of the spins, is written by [34],

1 o0'Z

T 200000 (5:55)

<8i1...8m>

The physical observable can be defined in term of correlation function. For example
a generalized susceptibility related to the correlation function by equation [34],

X = %Zij(sisj) . (556)

In the turbulence flow, the random variable is fluid velocity u;. Analogue to the
ferromagnetics system the quantities such as (u;u;) are called correlation function.
The average of w;1...u;, is called the n—point correlation function and is written,

1 "z
ui(r)ui(xe)...uy(zy,)) = — -0 -
e Jug () )} = G 3 35T ) b () =

(5.57)

In the field theory approach, the random variable (u;) can be viewed as a field. The

statistical partition function exhibit a close analogy to the generating functional
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of field theory. Using this analogy, if u(x) is a field then the n—point correlation

function can be defined as,

1 oz
lanules)-ulen)) = o5 5T = (5.58)
when the generating functional is given by [6],
Z= /D(u)efﬁdx. (5.59)

This equation is a conventional quantum field theory approach to turbulence [13, 14].
Recently, using this equation, perturbation field-theoretic techniques have been use-
ful in turbulence research. The method is called the renormalization group methods
(RG). The RG approach to the Stochastic Navier-Stokes equation allows us to prove
the existence of the infrared scale invariance with exactly known Kolmogorov dimen-
sion and calculate of representation constant such as the Kolmogorov constant in
a reasonable agreement with experiment [10]. The RG approach to turbulent flow
is based on the generating functional. Using standard procedure in field theory the
large distance long time behaviour, effective eddy viscosity, turbulence cascade and
the other transport coefficient can be investigated [11, 12, 13, 14].

In our formalism, the random variable is denoted by A, so that the n—point

correlation function is,

1 " Z[J]
Aulon) Avlza)--Aolen)) = Zoqess oy st =0 360)
and the generating functional is given by,
Z = / DA, el s +IuAlldet (5.61)

J is a source, where Lyg = —ifw,FW = 1 A"g,, 0 — 0,0,]A” for 'free’ field. The

2
expansion of the generating functional Z in the perturbation series generates the
Feynman diagram techniques.
Some physical observable can be calculated by the correlation function. For
example the pair correlation of the velocity (in momentum space) associated with a

physical observable given by [33],

—

(o (e (3 #)) = Z0) kaks

Topz Gas + =03 ok — k) . (5.62)

29



The energy spectrum E(k) is defined via the kinetic energy dissipation rate as,
€= / 2v,k* E(k)dk . (5.63)

v, is the kinematic viscosity and the kinetic energy dissipation (€) can be determined
by experiment or by observation [9, 32].
Turbulence has a scaling laws. Similar with critical phenomena, the theory of the

renormalized group can be used to find the scaling laws of turbulence [12, 13, 14].
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Chapter 6

Conclusion

The true law cannot be linear nor can they be derived from such

Albert Einstein

We have shown that there are similarity between electromagnetics field and fluid
dynamics using the Maxwell-like equation for an ideal fluid. These results provide
a clue that we might be able to build a lagrangian density using bosonic lagrangian
(abelian gauge theory) which is called the Navier-Stokes lagrangian in term of scalr
and vector potentials ,4,. Then the Navier-Stokes equation is obtained as its equa-
tion of motion through the Euler-lagrange principle. We have obtained the same
results for both Minkowski and Euclidean space-time formulations. The application
of the theory is wide, for instance the interaction between Davydov soliton with fluid
system that can be described by the lagrangian density which is similar to quantum
electrodynamics for boson particle. In the static condition, the lagrangian density
is similar with the Ginzburg-Landau lagrangian. If the fluid flow is parallel with
soliton propagation we also obtain the variable coefficient Nonlinear Klein-Gordon
equation. Single soliton solution has been obtained in term of a second hyperbolic
function. Using similarities between the statistical mechanics and the fields theory
we can construct the theory of turbulence. The n—point correlation function is
describe by the generating functional that similar with quantum electrodynamics.

More detail calculation on the application of our approach into some real phe-
nomenon, for instance turbulence and nano-crystal, can be seen in separate works

[35).
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Appendix
element of tensor analysis

In a non Euclidean vector space, the space-time continuous is defined in terms

of a four dimensional space with coordinate z°, 2!, 22, 23. There is a well-defined

0 3

. . . / / / !’ .
transformation that yields new coordinates %, 21, 22, 23 according to the role:

a 0

7% = 2/*(2°, 2t 2%, 2°) (6.1)

The transformation law is not specified. Tensor of rank k associated with the space-
time point x are defined by their transformation properties under the transformation
x —. For example, tensor of rank zero ( a scalar) is a single quantity whose value is
not changed by the transformation. Tensors of rank one ( a vector) have two kinds
of vectors. The first is called a contravariant (A%) that are transformed according

to the rule:
8x/a

61,/0{ ax/a ax/a 61,/0:
a oo B8 __ 0 1 2
AT =4 _8xﬁA_8x0A+6x1A+8x2A+8x3

AP (6.2)

The summation convention just for repeated indices. A covariant vector (A,) is

defined by the rule:

oxP 0x° ox"t ox'? ox'3

Ao = A, ox'a P T Y 0+83:0‘ 1+8x0‘ 2+8:c0‘

Ay (6.3)

The contravariant tensor of rank two F*% (consists of 16 quantities) that transform

according to the rule:

0z’ Ox'”
FP o AeB = = _p» 6.4
- oxY Oxd (64)
A covariant tensor of rank two Fiz transform according to:
0xY Ox°
Fop — AL = B 9B L (6.5)
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Define a tensor of rank two as follow:

Fuw =0,A, —0,A,

This is an anti-symmetry tensor of rank two.

Prove:

Fw— Flyy = OpAL —0,A,

0x° 0A,

R 0r7 0A, 9%x° B
o Qamdxr” Qa9 dxmdr T C Ol dam
027 0A, B 0z’ 0A,
o Qam Oz O Dt
_ 0x7 02 DA, B 0z? 0z® 0A,
Oz 9x 9re  Qx™ Dx'M Do
_ 0x7 02 0A, B ox® 0x° 0A,
O Qx dxre Qx™ dx'M Dxe
o0z’ 0x* 0A, 0A,

0x° 0x®

ox'r Ox'v ™ 7

ox'H 83:”’[0:6‘1 B 8:1:"]

(6.6)

(6.7)

The norm or metric is a special case of the general differential length element,

ds? = gagdxo‘dxﬁ

(6.8)

where gog = gpa is called the metric tensor. The Minkowsky space-time is defined

by:

go=1,01=0g22=033=—1gup=0=>a#

(6.9)

For the flat space-time we have g,5 = ¢’ and g,59*® = 07 is the kronecker delta.

The differential operator is defined by 0, = % = (0, —V). Using the metric tensor

9o We have useful formulae:

0A, 0

OAB = wgchﬂ/ = gaﬂ/w = gcvyég = GJop

0A”

0A”
0A,

0A;

0AY
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(6.11)



0A” 0 0A
v ga'y(sfj — gaﬁ

N o«
o, ~an,? =95,

OF iy ass
aFMV o ﬂél/ B 5’/ 5#
OF,; 0 OF

0 55F = ey
OFmw — gFmJerds o955 5w

= g, Y56 _ §7501 —
g ’Ygﬁ(sl:(su/(;y 51/5;,4] - gaugﬁV - gOéVgﬁllz
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